Declarative Systems for Large Scale Machine Learning

Markus Weimer, Tyson Condie, Raghu Ramakrishnan

Cloud and Information Services Laboratory
Microsoft
Joint work with ...

Yingyi Bu, Vinayak Borkar, Michael J. Carey
University of California, Irvine

Joshua Rosen, Neoklis Polyzotis
University of California, Santa Cruz
Example: Spam Filter

Spam Filter

Inbox

Spam

Logged Event

User Interface

6/5/12
Machine Learning Workflow

- **Step I: Example Formation**
 - Feature Extraction
 - Label Extraction
- **Step II: Modeling**
- **Step III: Deployment (or just Evaluation)**
Example Formation

Feature Extraction

EMail

Bag of Words

ID

Data Parallel Functions

Large Scale Join

Large Scale Join

ID

Bag of Words

Label

Click Log

ID

Label

Label Extraction

Feature Extraction
Modeling

- **Many Algorithms are inherently sequential**
 - Apply model to data → Look at Errors → Update Model

- **Common solutions**
 - Subsampling
 - Train on partitions, merge results
 - Rephrasing of algorithms in MapReduce
MapReduce for Modeling

- Learning algorithm access the data only through statistical queries

- A statistical query returns an estimate of the expectation of a function $f(x,y)$ applied to the data.

Efficient Noise-Tolerant Learning from Statistical Queries

MICHAEL KEARNS

AT&T Laboratories—Research, Florham Park, New Jersey

Abstract. In this paper, we study the problem of learning in the presence of classification noise in the probabilistic learning model of Valiant and its variants. In order to identify the class of "robust" learning algorithms in the most general way, we formalize a new but related model of learning from statistical queries. Intuitively, in this model, a learning algorithm is forbidden to examine individual examples of the unknown target function, but is given access to an oracle providing estimates of probabilities over the sample space of random examples.

One of our main results shows that any class of functions learnable from statistical queries is in fact learnable with classification noise in Valiant's model, with a noise rate approaching the information-theoretic barrier of $1/2$. We then demonstrate the generality of the statistical query model, showing that practically every class learnable in Valiant's model and its variants can also be learned in the new model (and thus can be learned in the presence of noise). A notable exception to this statement is the class of parity functions, which we prove is not learnable from statistical queries, and for which no noise-tolerant algorithm is known.

General Terms: Computational learning theory, Machine learning

Additional Key Words and Phrases: Computational learning theory, machine learning

1. Introduction

In this paper, we study the extension of Valiant's learning model [Valiant 1984] in which the positive or negative classification label provided with each random example may be corrupted by random noise. This extension was first examined in the learning theory literature by Angluin and Laird [1988], who formalized the simplest type of white label noise and then sought algorithms tolerating the highest possible rate of noise. In addition to being the subject of a number of theoretical studies [Angluin and Laird 1988; Laird 1988; Sloan 1988; Kearns and Li 1993], the classification noise model has become a common paradigm for experimental machine learning research.
MapReduce for Modeling

- Rephrase query in summation form.

- **Map**: Calculate function estimates over data partitions

- **Reduce**: Aggregate the function estimates.
Example Methods

• Convex Optimization
 – (Logistic) Regression
 – Support Vector machines
 – ...

• K-Means Clustering
• Naïve Bayes
• Neural Networks
• ...

\[P(y|x) \] from the training data. In order to do so, we need to sum over \(x_k = \theta \) for each \(y \) label in the training data to calculate \(P(x|y) \). We specify different sets of mappers to calculate the following:

\[
\sum_{\text{subgroup}} 1 \{ x_j = \theta \} = \sum_{\text{subgroup}} 1 \{ y = 1 \}, \sum_{\text{subgroup}} 1 \{ x_j = \theta \} = \sum_{\text{subgroup}} 1 \{ y = 0 \}, \sum_{\text{subgroup}} 1 \{ y = 1 \} \text{ and } \sum_{\text{subgroup}} 1 \{ y = 0 \}. \]

The reducer then sums up intermediate results to get the final result for the parameters.

• Gaussian Discriminative Analysis (GDA) The classic GDA algorithm [13] needs to learn the following four statistics \(P(y), \mu_0, \mu_1, \) and \(\Sigma \). For all the summation forms involved in these computations, we may leverage the map-reduce framework to parallelize the process. Each mapper will handle the summation (i.e., \(\sum 1 \{ y = 1 \}, \sum 1 \{ y = 0 \}, \sum 1 \{ y = 0 \} x_i \), etc) for a subgroup of the training samples. Finally, the reducer will aggregate the intermediate sums and calculate the final result for the parameters.

• k-means In k-means [12], it is clear that the operation of computing the Euclidean distance between the sample vectors and the centroids can be parallelized by splitting the data into individual subgroups and clustering samples in each subgroup separately (by the mapper). In recalculating new centroids vectors, we divide the sample vectors into subgroups, compute the sum of vectors in each subgroup in parallel, and finally the reducer will add up the partial sums and compute the new centroids.

• Logistic Regression (LR) For logistic regression [23], we choose the form of hypothesis as \(h_\theta(x) = g(\theta^T x) = 1 / (1 + \exp(-\theta^T x)) \). Learning is done by fitting \(\theta \) to the training data where the likelihood function can be optimized by using Newton-Raphson to update \(\theta := \theta - H^{-1} \nabla_\theta \ell(\theta) \). \(\nabla_\theta \ell(\theta) \) is the gradient, which can be computed in parallel by mappers summing up \(\sum_{\text{subgroup}} (y^{(i)} - h_\theta(x^{(i)})) x^{(i)} \) for each NR step i. The computation of the hessian matrix can be also written in a summation form of \(H(j, k) := \sum_{\text{subgroup}} (h_\theta(x^{(i)})) (h_\theta(x^{(i)})) - 1 \) for the mappers. The reducer will then sum up the values for gradient and hessian to perform the update for \(\theta \).

• Neural Network (NN) We focus on backpropagation [6] by defining a network structure (we use a three layer network with two output neurons classifying the data into two categories), each mapper propagates its set of data through the network. For each training example, the error is back propagated to calculate the partial gradient for each of the weights in the network. The reducer then sums the partial gradient from each mapper and does a batch gradient descent to update the weights of the network.

• Principal Components Analysis (PCA) PCA [29] computes the principle eigenvectors of the covariance matrix \(\Sigma = \frac{1}{m} \sum_{i=1}^{m} (x_i - \mu)(x_i - \mu)^T \) over the data. In the definition for \(\Sigma \), the term \(\sum_{i=1}^{m} x_i x_i^T \) is already expressed in summation form. Further, we can also express the mean vector \(\mu \) as a sum, \(\mu = \frac{1}{m} \sum_{i=1}^{m} x_i \). The sums can be mapped to separate cores, and then the reducer will sum up the partial results to produce the final empirical covariance matrix.

• Independent Component Analysis (ICA) ICA [11] tries to identify the independent source
Example: Batch Gradient Descent (BGD)

Until Convergence:

\[w_{t+1} = (1.0 - \eta \lambda) \ast \left(w_t - \eta \sum_{(x,y)} \partial_w l(y, \langle w_t, x \rangle) \right) \]

Regularization **Data Parallel Sum**

- \(w_t \): Current Model
- \(x \): Data
- \(y \): Label
- \(l \): loss function (e.g. squared error)
- \(\partial \): Gradient operator
Example: Gradient Computation
Modeling on Hadoop MapReduce?

• **Machine learning algorithms are iterative**
 – Each iteration contains multiple Statistical Queries

• **Overhead per MapReduce Job**
 – Each statistical query is a job
 – A job entails Scheduling, Data reading, State transfer, ...
 – Especially bad on shared clusters
More than Map Reduce

• **Complete Job DAGs**
 – Beyond the fixed map-groupby-reduce
 – Arbitrary length and complexity

• **More Operators**
 – Join, Filter, Project, ...

• **Examples**
 – Dryad (Microsoft Research)
 – Hyracks (UC Irvine)
 – Stratosphere (TU Berlin)
More than Map Reduce

• Complete Job DAGs
 – Beyond the fixed map-groupby-reduce
 – Arbitrary length and complexity

• More Operators
 – Join, Filter, Project, ...

• Examples
 – Dryad (Microsoft Research)
 – Hyracks (UC Irvine)
 – Stratosphere (TU Berlin)

Machine Learning is Cyclic!

6/5/12
Applied Large Scale ML requires ...

• A Relational Algebra
 – Join, Filter, Map, ...
 – For feature and label extraction

• Iterative computation
 – Loops over data
 – Incremental model updates

• Scalability / High Performance
 – Jobs must execute successfully irrespective of the data set size / runtime cluster configuration
 – More favorable cluster setups must be used for speed-ups (e.g. cache data in memory)
Take-away

• Usability is bad
 – Developing a single model takes months
 – Requires many tools and technologies

• Pick your poison on a way to a subpar solution
 – Subsampling hurts model fidelity
 – Training on MapReduce often too slow
Goals

• **Integrate modeling and ETL workflows**
 – All Pig operators
 – Iteration is a first class citizen
 – Unify MPI, Pregel, MapReduce, ... on a **single** runtime

• **Improve productivity**
 – Free the Programmer from runtime details (like MapReduce)
 – Facilitate easier job composition
 – IDE support
 – UDFs as first class citizens (unlike Pig)
Vision

1. User Program
2. Logical Plan
3. Physical Plan
4. Execution Engine
Vision

User Program

Logical Plan

Physical Plan

Execution Engine

Loop Aware on all Levels

ScalOps

Algebricks

Physical Plan

Hyracks

6/5/12
ScalOps – The Language

ScalOps

Algebricks

Physical Plan

Hyracks
ScalOps – Overview

• Embedded Domain Specific Language in Scala
• All Pig Operators (Filter, Join, GroupBy, …)
• Iteration support
• Rich UDF support
 – Inline Scala function calls / literals
 – Everything callable from a JVM can be a UDF
• Support in major IDEs
Example: Batch Gradient Descent (BGD)

Until Convergence:

\[w_{t+1} = (1.0 - \eta \lambda) \ast \left(w_t - \eta \sum_{(x,y)} \partial_w l(y, \langle w_t, x \rangle) \right) \]

- **Regularization**
- **Data Parallel Sum**

\(w_t \): Current Model
\(x \): Data
\(y \): Label

\(l \): loss function (e.g. squared error)
\(\partial \): Gradient operator
def train(xy: Table, compute_grad: (Example, Vector) => Vector, compute_loss: (Example, Vector) => Double) = {
 class Env(w: VectorType, lastError: DoubleType, delta: DoubleType) extends Environment

 val initialValue = new Env(VectorType.zeros(1000), Double.MaxValue, Double.MaxValue)

 loop(initialValue, (env: Env) => env.delta < eps) {
 val gradient = xy.map(x => compute_grad(x, env.w))
 val loss = xy.map(x => compute_loss(x, env.w))
 env.w -= gradient
 env.delta = env.lastLoss - loss
 env.lastLoss = loss
 env
 }
}

Training data; Table is our main collection type

Computes a gradient
Computes the loss
Native UDFs
Spark!?

- Scala DSL and runtime for data analytics

```scala
val points = spark.textFile(...).map(parsePoint).partitionBy(HashPartitioner(NODES)).cache()

val gradient = points.map(p =>
  (1 / (1 + exp(-p.y*(w dot p.x))) - 1) * p.y * p.x ).reduce(_ + _)
w += gradient

val points = spark.textFile(...).map(parsePoint).partitionBy(HashPartitioner(NODES)).cache()
```
Parse Tree Extraction Example

table.filter(_>7).map(x=>x^2)
Automatic Optimizations

```scala
def train(xy: Table[Example],
  compute_grad:(Example, Vector) => Vector,
  compute_loss:(Example, Vector) => Double) = {

  class Env(w: VectorType, lastError: DoubleType, delta: DoubleType) extends Environment

  val initialValue = new Env(VectorType.zeros(1000), Double.MaxValue, Double.MaxValue)

  loop(initialValue, (env: Env) => env.delta < eps) {
    env => {
      val gradient = xy.map(x => compute_grad(x, env.w)).reduce(_+_)
      val loss = xy.map(x => compute_loss(x, env.w)).reduce(_+_)
      env.w -= gradient
      env.delta = env.lastLoss - loss
      env
    }
  }
}
```
def train(xy: Table[Example],
 compute_grad:(Example, Vector) => Vector,
 compute_loss:(Example, Vector) => Double)

class Env(w: VectorType, lastError: DoubleType, delta: DoubleType) extends Environment
val initialValue = new Env(VectorType.zeros(1000), Double.MaxValue, Double.MaxValue)

loop(initialValue, (env: Env) => env.delta < eps) { env => {
 val gradient = xy.map(x => compute_grad(x, env.w)).reduce(_ + _)
 val loss = xy.map(x => compute_loss(x, env.w)).reduce(_ + _)

 env.w = gradient
 env.delta = env.lastLoss - loss
 env.lastLoss = loss
 env
}
def train(xy: Table[Example],
 compute_grad:(Example, Vector) => Vector,
 compute_loss:(Example, Vector) => Double) = {

class Env(w: VectorType, lastError: DoubleType, delta: DoubleType) extends Environment

val initialValue = new Env(VectorType.zeros(1000), Double.MaxValue, Double.MaxValue)

loop(initialValue, (env: Env) => env.delta < eps) {
 env => {
 val gradient = xy.map(x => compute_grad(x, env.w)).reduce(_ + _)
 val loss = xy.map(x => compute_loss(x, env.w)).reduce(_ + _)
 env.w -= gradient
 env.delta = env.lastLoss - loss
 env.lastLoss = loss
 }
}
}
def train(xy:Table[Example],
 compute_grad:(Example, Vector) => Vector,
 compute_loss:(Example, Vector) => Double) =>

class Env(w:VectorType, lastError:DoubleType, delta:DoubleType) extends Environment
val initialValue = new Env(VectorType.zeros(1000), Double.MaxValue, Double.MaxValue)

loop(initialValue, (env: Env) => env.delta < eps) {
 val gradient = xy.map(x=>compute_grad(x,env.w)).reduce(_+_)
 val loss = xy.map(x=>compute_loss(x,env.w)).reduce(_+_)

 env.w -= gradient
 env.delta = env.lastLoss - loss
 env.lastLoss = loss
 env
}
Automatic Optimizations

```scala
def train(xy: Table[Example],
    compute_grad:(Example, Vector) => Vector,
    compute_loss:(Example, Vector) => Double) = {

class Env(w: VectorType, lastError: DoubleType, delta: DoubleType) extends Environment

val initialValue = new Env(VectorType.zeros(1000), Double.MaxValue, Double.MaxValue)

loop(initialValue, (env: Env) => env.delta < eps) {
    env => {
        val gradient = xy.map(x=>compute_grad(x,env.w)).reduce(_+_)
        val loss = xy.map(x=>compute_loss(x,env.w)).reduce(_+_)
        env.w -= gradient
        env.delta = env.lastLoss - loss
        env.lastLoss = loss
        env
    }
}
```
Automatic Optimizations

def train(xy: Table[Example],
 compute_grad:(Example, Vector) => Vector,
 compute_loss:(Example, Vector) => Double) = {

 class Env(w: VectorType, lastError: DoubleType, delta: DoubleType) extends Environment

 val initialValue = new Env(VectorType.zeros(1000), Double.MaxValue, Double.MaxValue)

 loop(initialValue, (env: Env) => env.delta < eps) {
 env => {
 val gradient = xy.map(x => compute_grad(x, env.w)).reduce(_ + _)
 val loss = xy.map(x => compute_loss(x, env.w)).reduce(_ + _)
 env.w -= gradient
 env.delta = env.lastLoss - loss
 env.lastLoss = loss
 env
 }
 }

 Cache xy in main memory, if possible
Result: Logical Plan

- Training Data
- MapReduce
 - Map()
 - Reduce()
- Model
- Continue()
- Loop
- Update()
- Sequential
- Aggregate Statistics
- (Model, Performance)
Physical Optimizer

- ScalOps
- Algebricks
- Physical Plan
- Hyracks
Iterative Map-Reduce-Update

Data Loading

HDFS → CR → Cached Records

Iterative Computation

HDFS → (map) CR → Iteration Barrier → (reduce) Aggregation tree → Sequential (update) → HDFS

How many?

Fan-In?

Driver (loop)

Cached Records

How many?

Fan-In?
Other “Optimizations”

• Caching, “Rocking”
• Data-Local Scheduling
• Iteration-Aware Scheduling
• Avoid (de-)serialization
• Minimize #network connections
• Pipelining
• ...
Optimal Aggregation Tree Fan-In
Tree Fan-In
Tree Fan-In: Blocking

\[h = \log_f(N) = \frac{\ln(N)}{\ln(f)} \]
Tree Fan-In: Time per level

\[t = fA \]

\[h = \log_f(N) = \frac{\ln(N)}{\ln(f)} \]
Overall Aggregation Time Minimization

$$T = h \times t = \frac{f}{\ln(f)} \ln(N) A$$

Minimized for $f=e$
Optimal Partitioning: Time per Iteration

\[T = T_A(N) + T_M(N) \]

\[= Ae \ln(N) + \frac{RD + RP}{N} - MD \]

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>R</td>
<td># Records</td>
</tr>
<tr>
<td>M</td>
<td>Cache capacity per CPU</td>
</tr>
<tr>
<td>P</td>
<td>Map time per record</td>
</tr>
<tr>
<td>D</td>
<td>Load time per record</td>
</tr>
<tr>
<td>A</td>
<td>Aggregation time per record</td>
</tr>
</tbody>
</table>
Optimal Choices (Summary)

• **Minimal Wall Clock Time**
 – Balance aggregation & map time
 – Almost always: Use as many machines as you can

• **Minimal Cost** (time x #machines)
 – If your data fits into distributed RAM: do that
 – Else: It’s complicated
Time Optimal Partitioning

Let $R \leq MN$. The **time-minimal** number of machines for an Iterative Map-Reduce-Update operator is

$$\hat{N}_1 = \frac{RP}{Ae}$$

Let $R > MN$. The **time-minimal** number of machines for an Iterative Map-Reduce-Update operator is

$$\hat{N}_1 = \frac{RD + RP}{Ae}$$

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>R</td>
<td># Records</td>
</tr>
<tr>
<td>M</td>
<td>Cache capacity per CPU</td>
</tr>
<tr>
<td>P</td>
<td>Map time per record</td>
</tr>
<tr>
<td>D</td>
<td>Load time per record</td>
</tr>
<tr>
<td>A</td>
<td>Aggregation time per record</td>
</tr>
</tbody>
</table>

Most often: Use as many machines as you have
Cost Optimal Partitioning

Let $R \leq MN$. The cost-minimal number of machines for an Iterative Map-Reduce-Update operator is

$$\hat{N}_1 = \frac{R}{M}$$

Let $R > MN$. The cost-minimal number of machines for an Iterative Map-Reduce-Update operator is

$$\hat{N}_1 = e^{\frac{MD}{Ae}}$$

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>R</td>
<td># Records</td>
</tr>
<tr>
<td>M</td>
<td>Cache capacity per CPU</td>
</tr>
<tr>
<td>P</td>
<td>Map time per record</td>
</tr>
<tr>
<td>D</td>
<td>Load time per record</td>
</tr>
<tr>
<td>A</td>
<td>Aggregation time per record</td>
</tr>
</tbody>
</table>
Evaluation

ScalOps

Algebricks

Physical Plan

Hyracks
Evaluation Methodology

• **Metrics**
 – Iteration time
 – Cost: iteration time x number of machines

• **Speed-up**
 – Fix the data size and scale up # of machines
 – Goal: identify cost optimal # of machines

• **Scale-up**
 – Start with cost optimal configuration
 – Proportionally increase data size and # of machines
6/5/12

1. Public opinion shifts on Trayvon Martin case
2. 7 California boys arrested in attack on teen
3. 7 people to blame for the Trayvon Martin hysteria
4. Workers restoring Russian mansion find treasure
5. Calif. doctor accused of giving daughter prophylac
News Recommendation

• **Task**
 – Predict news click-through rate
 – Linear Model

• **Data**
 – 120GB in libsvm text format

• **Hardware**
 – 150 Machines in 5 Rack, 1Gbps Ethernet
 – Each machine: 8 Cores, 4 Disks, 16GB RAM
Spark vs. Hyracks Speedup

![Graph showing comparison between Spark and Hyracks]

Figure 1: BGD speed-up of Hyracks and Spark on Yahoo! News dataset

Legend:
- Blue: Iteration time (seconds)
- Red: Cost (machine-seconds)
Spark vs. Hyracks Scale-up

Figure 2: BGD scale-up of Hyracks vs. Spark

- Spark C30
- Hyracks C30
- Hyracks C10
Personalized Advertisement

• **Task**
 – Predict ad click-through rate
 – Linear Model, learned with BGD

• **Data**
 – 500GB in VW text format

• **Hardware**
 – 30 Machines in one Rack 1Gbps Ethernet
 – Each machine: 8 Cores, 4 Disks, 16GB RAM
<table>
<thead>
<tr>
<th>Iteration time (s)</th>
<th>VW</th>
<th>Hyracks (VW)</th>
<th>Hyracks (Optimized)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>124.41</td>
<td>127.42</td>
<td>114.54</td>
</tr>
</tbody>
</table>

6/5/12
Results: Optimizer Evaluation

- Optimizer: Cheapest
- Optimizer: Fastest
Experiments in the Pregel Model

• **Task**
 – Compute PageRank

• **Data**
 – Yahoo! Webmap as available on Webscope
 – 1.4B nodes, 8GB on disk

• **Cluster**
 – 150 Machines in 5 Rack, 1Gbps Ethernet
 – Each machine: 8 Cores, 4 Disks, 16GB RAM
Related Work

• **Three OSS systems can run the task**
 – Hadoop
 – Hyracks
 – GraphLab 2 (different computation model)

• **Several systems failed despite 3.2TB RAM**
 – Giraph/Golden Orb (by transitive closure)
 – Spark (despite Matei’s help)
 – Mahout
Figure 3: PageRank speed-up of Hyracks vs. Hadoop

Hyracks vs. Hadoop Pagerank Speedup
Conclusion

Loop Aware on all Levels
Benefits

• Unifies both ETL and Iterative Computation in a single framework
 – Simplifies Job Composition

• Optimizable Execution Plans
 – Imperative for compute clouds
 – Supports different optimization goals
Future Work

• **Build & package it for consumption**

• **Optimizer for recursive data flows**
 – Example: Auto-detect the need for caching

• **Expose runtime policies to the DSL layer**
 – Example: Make fault tolerance optional

• **Support Asynchronous Computation**
 – Important for Graphical Models
Coordinates

• Hyracks
 – http://code.google.com/p/hyracks/
 – http://asterix.ics.uci.edu/

• Markus Weimer
 – mweimer@microsoft.com
 – @markusweimer
 – http://cs.markusweimer.com